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 34 

ABSTRACT  35 

 36 

A variety of signals influence the capacity of dendritic cells (DCs) to mount potent antiviral 37 

cytotoxic T-cell (CTL) responses. In particular, innate immune sensing by pathogen 38 

recognition receptors (PRRs), such as TLR and C-type lectines, influences DC biology and 39 

affects their susceptibility to HIV infection. Yet, whether the combined effects of PPRs 40 

triggering and HIV infection influence HIV-specific CTL responses remain enigmatic. Here, 41 

we dissect the impact of innate immune sensing by PRRs on DC maturation, HIV infection 42 

and on the quality of HIV-specific CTL activation. Remarkably, ligand-driven triggering of 43 

TLR-3, -4, NOD2 and DC-SIGN, despite reducing viral replication, markedly increased the 44 

capacity of infected DCs to stimulate HIV-specific CTLs. This was exemplified by the 45 

diversity and the quantity of cytokines produced by HIV-specific CTLs primed by these 46 

DCs. Infecting DCs with viruses harboring members of the APOBEC family of antiviral 47 

factors enhanced the antigen-presenting skills of infected DCs. Our results highlight the tight 48 

interplay between innate and adaptive immunity and may help develop innovative 49 

immunotherapies against viral infections. 50 

51 
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 52 

INTRODUCTION 53 

 54 

In humans, several DC subsets have been identified, including BDCA-1
+
 and BDCA-3

+
 55 

conventional DC (cDC) and inflammatory monocyte-derived DC (MDDC) [1]. DCs share 56 

common features such as the capacity to capture antigen (Ag), migrate and form privileged 57 

interactions with effector T cells in lymphoid tissues. While migrating, DCs process 58 

captured antigens such as proteins, virions or infected cells leading to the loading of major 59 

histocompatibility class I (MHC-I) or class II (MHC-II) molecules and activation of CD8
+
 or 60 

CD4
+
 T cells, respectively [2]. Alternatively, DCs can be directly infected and present newly 61 

synthetized antigens (so called endogenous antigens) to T cells [3]. The sensing of microbes 62 

by pathogen recognition receptors (PRRs) initiate the maturation of DCs that enhances their 63 

capacities to interact and present antigen to T cells [4]. DC maturation is characterized by a 64 

higher cell surface expression of MHC-I and MHC-II molecules, of co-stimulatory 65 

molecules, but also changes in vesicular trafficking or composition of proteases involved in 66 

antigen processing [5]. PRRs include transmembrane receptors such as TLR- and C-type 67 

lectins as well as cytosolic sensors including NOD2 [6]. PRRs bind distinct pathogen-68 

associated molecular patterns (PAMPs) and trigger different cascades of intracellular 69 

signalings leading to the expression of lymphokines that strongly influence the capacity of 70 

DC to cross-present infected cells and soluble antigens to cytotoxic CD8
+
 T cells (CTLs) [2]. 71 

In addition, PRR-triggering initiates the expression of antiviral factors and the secretion of 72 

antiviral cytokines/chemokines [6]. 73 

cDCs contribute to HIV-1 infection (hereafter referred as HIV) and spread while initiating 74 

innate and adaptive anti-HIV immune responses [7]. cDCs and MDDCs, that are located or 75 

attracted at HIV entry sites, are among the targets of HIV infection [8] and contribute to 76 

chronic infection [9]. In the absence of treatment, infected cDCs and monocytes are found in 77 

the blood of HIV
+
 donors [8, 10]. Ex vivo, sorted BDCA1

+
 cDCs support productive 78 

infection of HIV strains [11, 12]. MDDCs are equipped with HIV receptors and express 79 

molecules involved in HIV capture (e.g. DC-SIGN) that facilitate infection and viral transfer 80 

[7]. Nonetheless, HIV replicates poorly in DCs as compared to activated CD4
+
 T cells [13, 81 

14]. This is due to the expression of viral restriction factors blocking HIV replication at 82 

different stages of DC infection, e.g. SAMHD1 depletes intracellular dNTPs and degrades 83 

viral RNA, and APOBEC-3G (A3G) and -3F (A3F) interfere with reverse transcription and 84 

introduce point mutations in HIV DNA [15, 16]. DC maturation further reduces 85 
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susceptibility to infection and is associated with an increase in A3G and A3F expressions 86 

[17]. HIV also exploits innate immune signaling pathways to facilitate productive infection 87 

of DCs [18]. Hence, depending on the PRRs involved, triggering of innate antiviral 88 

responses in DCs has contrasting roles on viral replication [18-20].  89 

HIV specific (HS)-CTLs play a critical role in controlling HIV replication. During acute 90 

infection, expansion of HS-CTLs is associated with decreased viremia and determines viral 91 

set point during chronic infection [21]. Resistance to disease progression correlates with 92 

detection of HIV Gag-specific CTLs and with expression of particular HLA alleles, such as 93 

HLA-B*27. HIV rapidly mutates to evade virus-specific CTL responses, underlying the 94 

selection pressure exerted by CTLs [22]. However, our understanding of T-cell efficacy in 95 

HIV infection is still limited. The quality, defined as the secretion of multiple antiviral 96 

cytokines/chemokines, and not the magnitude of T-cell responses determines HIV disease 97 

outcome [23]. The quality of T-cell activation is linked to various parameters such as the 98 

avidity of the TcR/MHC interactions, the cytokine environment but also the kinetics and 99 

quantity of antigen presented on APCs. These factors are influenced by PRR-activation [4]. 100 

Previous reports have shown, in vivo and in vitro, that treatments with TLR-3 and TLR-7 101 

ligands improve the capacity of DCs to present HIV protein antigens or HIV peptides to HS-102 

CTLs [24, 25].  103 

In the present work, we examined the consequences of PRR-triggering of DCs on 104 

immunological and virological parameters: maturation, HIV replication and quality of CTL 105 

stimulation by HIV-infected DCs. We show that HIV infection induces an intermediate 106 

maturation of DCs. However, PRR activation fully restores DC maturation. Only a limited 107 

set of PRR agonists (TLR-3, TLR-4, NOD2 and DC-SIGN ligands) influence HIV 108 

replication, highlighting that DC maturation is not systematically associated with lower viral 109 

replication. Notably, the agonists that reduce viral replication promoted the expression of 110 

antiviral factors, such as APOBECs, but also enhanced the capacity of infected DC to 111 

stimulate HS-CTLs. This is exemplified by the magnitude and the quality of HS-CTL 112 

activation. Finally, we demonstrate that the antiviral factors A3G and A3F enhance the 113 

ability of DCs to activate HS-CTL responses, thus linking innate and adaptive immunity. 114 

115 
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 116 

 RESULTS 117 

 118 

Human MDDCs express NOD2 and various levels of TLR-1 to TLR-9 119 

Using RT-qPCR, we first analyzed the relative expression levels of PRRs in sorted DC-120 

SIGN
+
 MDDCs. As expected [26, 27], transcripts encoding TLR-1 to -8 and NOD2 were 121 

detected, though to variable rates (not shown). In contrast to Li et al. [26] but in accordance 122 

with the work of Tada et al. [27], we also detected TLR9 mRNA. TLR-2 and TLR-4 mRNA 123 

were the most abundant. We thus selected a library of ligands binding to TLR-1 to -9, 124 

NOD2 and DC-SIGN, a lectin also involved in HIV antigen presentation [28]. As described 125 

in Supporting Information Fig. 1A, MDDCs were infected 24 h or 3 days, with the R5-tropic 126 

HIVYu2b strain, in the presence or absence of reverse transcription inhibitors, respectively, 127 

and treated at the time of infection with the agonists (or untreated as negative control). At 128 

each time point, the maturation and the capacity of PRR-ligand treated MDDCs to present 129 

HIV antigens to HIV-specific CTLs was compared. 3-day post infection (p.i.), HIV 130 

replication in MDDC cultures was also monitored. To certify that the concentrations of PRR 131 

agonists used in our study were sufficient to induce MDDC activation, we also analysed, 3 132 

day post-treatment and/or infection the cytokine/chemokine secretion patterns   (Supporting 133 

Information Fig. 1B). 134 

 135 

HIV infection does not interfere with PRR-induced maturation of human MDDCs 136 

We monitored the consequences of PRR-triggering on the cell surface expressions of the 137 

classical DC maturation markers: CD86, CD83, HLA-I (class I), HLA-DR and DC-SIGN 138 

(Fig. 1). A representative staining using MDDCs from one individual using TLR-4 ligand 139 

(LPS) is shown in Fig. 1A. This experiment was repeated using MDDCs from 8 healthy 140 

individuals and the results compiled in Fig. 1B.  141 

At early time points (24h), LPS induced a strong up-regulation of CD86, CD83, MHC-I and 142 

HLA-DR (2.5 to 4.1 fold increase). LPS-activated DCs also down-regulate DC-SIGN 143 

expression  (average fold change < 0.7) (Fig. 1B and Supporting Information Fig. 2A). We 144 

interpreted the decrease of DC-SIGN expression is a hallmark of DC maturation. With the 145 

exception of TLR-2, all PRR-ligands induced to various extend the maturation of MDDCs 146 

24 h after treatment (Fig. 1B). CD86, CD83 and HLA-DR were highly up-regulated 147 

following TLR-1/2, TLR-4 and  -SIGN triggering (fold change ranging 1.7 to 4.1), while 148 

other PRR ligands moderately changed their expression levels (average fold change ranging 149 
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1.5 to 2). At 24h, the loading of MDDCs with viral particles induced a marked increase of 150 

CD86 and HLA-DR, (fold change expression of 1.6 and 2.8, respectively) and a slight 151 

increase of other markers. However, loading MDDCs simultaneously with HIV and PRR 152 

agonists restored a maturation profile similar to PRR-agonists alone.  153 

At later time points (72 h after treatment), TLR-2 and TLR-9 induced a modest maturation 154 

of MDDCs (Fold change > 1.5). All other agonists induced a significant increase of 2 (e.g. 155 

TLR-8) to 5 (e.g. TLR-4) maturation markers (average fold increases ranging from 1.5 to 156 

5.1). TLR-4 and DC-SIGN agonists induced a significant DC-SIGN down-regulation both at 157 

24h or 72h post-treatment. Remarkably, HIV-infection of MDDCs (72h), induced a strong 158 

and significant increase of CD86 and a slight, non-significant, increase of all other 159 

maturation markers. This induction of maturation was also exemplified by the cytokine 160 

secretion patterns induced by HIV infection of MDDCs (Supporting Information Fig. 1B). 161 

PRR-activation of infected MDDCs established a matured phenotype, exacerbating the 162 

maturation profile observed for uninfected DCs (Fig. 1B). We then compared the maturation 163 

profile of productively infected (Gag-p24 positive) and "by-stander" (Gag-p24 negative) 164 

cells (Supporting Information Fig. 2B). Among PRR-treated but also untreated cells, Gag-165 

p24 positive cells showed a higher expression of CD83 and HLA-DR than Gag-p24 negative 166 

cells. The expression profiles of CD86 and HLA-I were only slightly up-regulated in Gag-167 

p24 positive cells as compared with Gag-p24 negative cells. 168 

In summary, PRR agonists induced a moderate (TLR-2) to strong (TLR-1/2, TLR-4, NOD2 169 

and DC-SIGN) MDDC maturation. HIV provoked a slight maturation of MDDCs with 170 

productively infected MDDCs (Gag-p24
+
 cells) being more matured than Gag-24 negative 171 

cells. HIV infection did not interfere with the maturation induced by each of the ligands.  172 

 173 

Triggering of TLR-3, -4, NOD2 and DC-SIGN diminishes HIV replication in MDDCs 174 

We then analyzed the capacity of HIV to replicate in MDDCs treated at the time if infection 175 

with the panel of PRR agonists (Fig. 2 and Supporting Information Fig. 1A). A 176 

representative experiment using MDDCs from a single donor is presented in Fig. 2A. The 177 

results from 8 independent experiments using MDDCs derived from 8 individuals are 178 

presented as percent of Gag-p24
+
 cells (Fig. 2B) and as relative levels of infection (Fig. 2C). 179 

The infection rate of untreated MDDCs using HIVYu2b was on average 12.4 % (ranging from 180 

4.3 to 24.7 %). None of the PRR agonists significantly increased HIV-infection of MDDCs. 181 

In contrast, DC treatment with TLR-3, TLR-4, NOD2 and DC-SIGN ligands was associated 182 

with a significant (p<0.05) reduction in HIV replication (as exemplified by the decrease in 183 
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the frequency of Gag-p24
+
 cells). TLR-5, TLR-8 and TLR-9 agonists also lead to a slight 184 

reduction of Gag-p24
+
 cells (average fold decrease of 0.8). The most dramatic decrease was 185 

observed using the agonists of TLR-4 (LPS) and TLR-3 (PolyI:C), for which viral 186 

replication was on average 80 % and 55 % reduced as compared with untreated cells, 187 

respectively (Fig. 2). We obtained similar results when collecting cell-culture supernatant 188 

and performed a p24-ELISA (not shown). 189 

 190 

Innate antiviral factors are upregulated in human MDDCs upon PRR activation  191 

We measured by RT-qPCR the expression of viral restriction factors (A3G, A3A, A3F, 192 

SAMHD1, Tetherin, CyPA and ADAR1) and viral sensors or enzymes that interact with 193 

PRR signaling (RIG-I, MDA5, A20 and TREX1) [29]. We used the innate immune 194 

activation marker, MxA, as control (Fig. 3). We focused our analysis on PRR-ligands that 195 

induced an inhibition of HIV replication in DCs (TLR-3, TLR-4, NOD2, and DC-SIGN) and 196 

as a control TLR-6/2 agonist, which did not impact HIV infection (Fig. 2). MDDCs were 197 

treated with PRR-agonists in the presence or absence of replicative competent HIVYU2b and 198 

the relative mRNA expression levels were compared to the untreated uninfected controls. 199 

With the exception of SAMHD1 and CypA, TLR-3 and -4 agonists induced modest (1.2 and 200 

3.3 fold increases in Tetherin expression, respectively) to very strong (31 and 563 fold 201 

increases in A3A expression) up-regulation of all mRNA analyzed. HIV infection further 202 

enhanced the mRNA expression levels without changing the overall profiles. TLR-6/2 203 

ligand only slightly increased the expression of A3F, ADAR-1 and A20 mRNA. NOD2 and 204 

DC-SIGN agonists induced an intermediate expression profile with a slight increase of A3G, 205 

A3F, ADAR1, RIG-I, MDA5, A20 and MxA (folds changes between 1.9 and 6.9). In 206 

contrast, mRNA of A3A, SAMHD1 and CypA were downregulated by NOD2 and DC-207 

SIGN ligands. These down-modulations were even more pronounced in HIV-infected 208 

MDDCs. Overall, we observed an increase of transcripts encoding for the antiviral 209 

restriction factors A3G, A3A, A3F, ADAR-1 and Tetherin upon treatment with TLR-3, -4, 210 

NOD2, DC-SIGN but not TLR-6/2 ligands (Fig. 3).  211 

 212 

Triggering of TLR-3, TLR-4, NOD2 and DC-SIGN at the time of infection enhances 213 

HS-specific CTL activation by infected MDDC.  214 

We then analyzed the capacity of PRR-agonist-treated DCs to activate HS-CTLs. 24 h and 3 215 

d p.i., MDDCs loaded or infected with HIVYu2b, respectively, and treated with the panel of 216 

PRR ligands were co-cultured with an HS-CTL clone restricted by HLA-A*0201 and 217 
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specific for SL9 peptide from HIV Gag-p17 (Fig. 4). Note that for DCs loaded with HIV for 218 

24h in the presence of RT inhibitors (AZT+NVP), HIV antigens are derived solely from 219 

incoming viral particles (so-called exogenous presentation) [28]; in contrast, upon 3-day of 220 

infection, the source of HIV antigens corresponds mainly to newly synthetized HIV proteins 221 

(so-called endogenous presentation) [30]. A representative IFN-γ ELISpot, using MDDCs 222 

from a single donor is presented in Supporting Information Fig. 3 and the data combined 223 

with three additional independent experiments in Fig. 4. PRR activation had no significant 224 

impact on the capacity of HIV- or peptide-loaded MDDCs to activate the SL9-specific CTL 225 

clone (Fig. 4A). LPS (TLR-4)-treatment of MDDCs induced a slight, but not significant, 226 

decrease of T cell activation by HIV-loaded MDDCs (Fig. 4A). Interestingly, with the 227 

exception of LPS that decreases T cells activation levels, PRR triggering had, at first sight, 228 

also a minor influence on the capacity of HIV-infected cells (3 d p.i.) to stimulate the SL9-229 

specific CTL clone (Fig. 4B). However, 3-day post-infection the main source of antigens is 230 

derived from newly synthetized Gag antigens [30]. We thus examined T cell activation 231 

relative to the infection rates (Fig. 4B, right panel). Strikingly, relative to their capacity to 232 

reduce viral replication (Fig. 2), TLR-3, TLR-4, NOD2 and DC-SIGN agonists enhanced (3 233 

to 6 fold) the activation of the SL9-specific CTL clone. Note that, 3-day post treatment, 234 

PRR-triggering increased modestly, if any, peptide-mediated activation of the SL9-specific 235 

CTL (Fig. 4B, left panel). Overall, our results strongly suggest that TLR-3, TLR-4, NOD2 236 

and DC-SIGN triggering improve the capacity of infected MDDCs to stimulate HS-CTLs, 237 

and this is not uniquely due to increased MHC-I expression.  238 

We then sought in extending these findings to primary blood derived DCs. To this end, 239 

BDCA1
+
 DCs were sorted from PBMCs of HLA-A*02

+
 donors, infected with HIVYu2b (+/- 240 

RT inhibitors) and simultaneously treated with TLR-3 ligand (Supporting Information Fig. 241 

4A). Due to the limited amount of DCs sorted (1.3 +/- 0.6 million cells), we could not 242 

envisage performing multiple PRR-agonist treatments. The infection and maturation levels 243 

were assessed using intracellular Gagp24 or cell-surface CD86 stainings, respectively. 244 

BDCA1
+
 DCs were then co-cultured with SL9-specific CTLs and T cell activation 245 

monitored. 2-day pi, BDCA1
+
 DCs exhibited a marked maturation phenotype induced by 246 

HIV particles and further enhanced by TLR3-trigerring (Supporting Information Fig. 4B). 247 

As compared to uninfected cells, regardless of the presence of RT inhibitors, BDCA1
+
 DCs 248 

stained positive with the anti-Gagp24 Ab, suggesting that 2 days pi, the anti-Gagp24 Ab 249 

staining allowed the detection of the viral input and not exclusively of HIV-infected cells. 250 

Consequently, BDCA1
+
 DCs loaded with HIV +/- RT inhibitors induced the same levels of 251 
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SL9-specific CTL activation (Supporting Information Fig. 4C). As observed in Fig. 4, TLR-252 

3 triggering of BDCA1
+
 DCs, did not significantly influence this exogenous HIV antigen 253 

presentation (Supporting Information Fig. 4C). Overall, these experiments showed that the 254 

viral input might be used as a source of antigen by BDCA1
+
 DC to activate Gag-specific 255 

CTLs. However, it did not allow drawing conclusions on the influence of PRR-triggering on 256 

the presentation of newly synthetized viral antigens.  257 

 258 

Triggering of TLR-3, TLR-4, NOD2 and DC-SIGN at the time of infection improves 259 

the quality of HS-specific CTL activation by infected MDDCs. 260 

We then examined the capacity of HIV-loaded or -infected PRR-treated MDDCs to induce T 261 

cell polyfunctional responses using two HLA-B*27 restricted CTL clones (E2C and H8B) 262 

specific for Gag-p24 KK10 epitope and whose polyfunctional profiles have been previously 263 

characterized [31]. As illustrated in Supporting Information Fig. 5, polyfunctional activation 264 

was analyzed using IFN-γ, IFN-αααα, IL-2, TNF-α, MIP-1β and CD107a mobilization [31]. 265 

As for the SL9-specific CTL clones, 24 h post PRR-stimulation, MDDCs loaded with KK10 266 

peptide or with HIV, induced similar levels of activation (not shown). 72 h post PRR-267 

treatments, peptide-loaded MDDCs also brought comparable levels of HS-CTL activation 268 

(Fig. 5, left panels). 72 h post infection, most PRR ligands provoked a modest increase of 269 

KK10-specific CTL activation (Fig. 5). To highlight the quality of T cell activation, the 270 

results were also expressed as a polyfunctional index that allows a quantitative assessment 271 

of T cell poly functionality [32]. The polyfunctional indexes induced by KK10-peptide 272 

loaded- or HIV-infected PRR-treated MDDCs followed a similar trend than the global HS-273 

CTL activation levels (Fig. 5). However, relatively to their capacity to reduce viral 274 

replication (Fig. 2), TLR-3, TLR-4, NOD2 and DC-SIGN agonists increased the activation 275 

and the polyfunctionality of the KK10-specific CTL clones from 3-16 fold (Fig. 5, right 276 

panels).  277 

Thereafter using distinct HS-CTL clones and analyzing both the magnitude and quality of T 278 

cell activation, we observed that TLR-3, TLR-4, NOD2 and DC-SIGN pathways have a dual 279 

role: they limit HIV replication in MDDCs while inducing highly functional HS-CTL 280 

responses.  281 

 282 

APOBEC-3G (A3G) and -3F (A3F) enhance HIV antigen presentation by MDDCs. 283 

We have previously shown that A3G-mediated viral restriction contributes to the 284 

immunogenicity of HIV-infected cells [33]. Since A3G but also A3F expression are induced 285 
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upon TLR-3, TLR-4, NOD2 and DC-SIGN MDDC activation, we decided to define their 286 

role in the enhancement of CTL activation by MDDCs. We first designed shRNA targeting 287 

A3G and A3F expression to stably abolish A3G and A3F expression in MDDCs using 288 

lentiviral vectors. However, although the shRNA strongly reduced the expression levels of 289 

A3G and A3F in untreated uninfected MDDCs, shRNA-mediated A3G and A3F inhibitions 290 

were saturated by TLR-3-, TLR-4-, NOD2- or DC-SIGN-triggering that induced a strong 291 

up-regulation of A3G and A3F (not shown and Fig. 3). We thus used an alternative approach 292 

by introducing A3G and A3F in HIVSF2 particles prior to infecting MDDCs (Fig. 6A) [33]. 293 

In this approach, A3G and A3F are packaged into newly formed HIV particles and 294 

subsequently edit the nascent viral DNA leading to G- to -A hypermutations in the proviral 295 

genome [34]. As expected, infecting a T cell line with A3G- or A3F-containing HIV virions 296 

lead to reduced viral replication, as compared to wild-type HIV, but increase activation of 297 

the SL9-specific CTL clone than HIV alone (Fig. 6B). These results confirmed, and further 298 

extend to A3F, our previous demonstration that A3G editing enhances the ability of HIV-299 

infected CD4
+
 T cells to activate HS-CTLs [33].  300 

Using a similar approach, MDDCs were infected with HIV, A3G
+
 and A3F

+
 containing HIV, 301 

viral replication monitored and cells co-cultured with the SL9-specific CTL clone (Fig. 6C). 302 

As previously, the antiviral activity of A3G and A3F reduced MDDC infection as compared 303 

to HIV alone but enhanced the capacity of MDDCs to activate the HS-CTL clone. MDDCs 304 

treated with RT-inhibitors did not induce a significant CTL activation. As in CD4
+
 T cells, 305 

these results strongly suggest that in DCs, the editing activity of A3G and A3F favors the 306 

generation of endogenous MHC-I restricted antigens that improve HS-CTL activation.  307 

308 
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DISCUSSION 309 

 310 

DCs express membrane-bound, endosomal or cytosolic PRRs that are involved in the 311 

sensing of microbes and viruses. In pDCs, previous studies have shown that the ssRNA of 312 

HIV is sensed by TLR-7/8 [35]. In MDDCs, the uptake of HIV leads to NF-KB activation, 313 

also through the triggering of TLR-8, and results in abortive transcription of HIV genome 314 

[18]. However, whether HIV-mediated TLR-8-activation leads to MDDC maturation is less 315 

clear [18].  In fact, the effect of HIV infection on MDDC maturation is controversial. Using 316 

single cycle virus or AZT to block productive infection, some reports have shown that the 317 

viral inoculum does not induce maturation [14, 36]. In contrast, using highly purified 318 

chemically inactivated virus, others have shown that the viral input induces, in a dose 319 

dependent manner, a partial maturation of MDDCs [37, 38]. In our work, we also observed 320 

that abortive HIV infection (HIV+RT inhibitors) induces an intermediate maturation of DCs. 321 

The impact of productive infection of MDDCs is also a matter of debate as some authors 322 

described that HIV replication induces MDDC maturation [14, 37-39] while others did not 323 

[36, 40, 41]. Using 8 MDDC preparations, we show here that HIV replication induces 324 

MDDC maturation with productively infected cells (HIV Gag-p24
+
) exhibiting a more 325 

mature phenotype. The treatment of MDDCs with TLR-1 to -9, DC-SIGN and NOD-2 326 

ligands further enhanced the maturation of DCs loaded or infected with the virus. 327 

PRR triggering initiates an antiviral state involving the secretion of antiviral cytokines 328 

and the expression of Interferon-stimulated genes (ISGs). Some ISGs including A3G, A3A, 329 

A3F, SAMHD1, Tetherin, CyPA and ADAR1 inhibit HIV replication [29]. HIV replication 330 

in MDDCs also induces the expression of ISG [14]. However in HIV-infected cells, ISGs 331 

upregulation is delayed as compared to PRR-agonist treated MDDCs [14], potentially due to 332 

hijacking of the TBK-1/IRF3 transduction pathway [37]. Productive infection of MDDCs 333 

might also, at least partially, block TLR-induced phenotypic maturation of MDDCs [40]. On 334 

the other hand, TLR-3 and -4 ligands increase A3G and A3F expression limiting HIV 335 

replication in macrophages and DCs [16, 19, 42]. Triggering of NOD2 also reduces HIV 336 

replication in MDDCs [43]. The kinetics of PRR-triggering differentially influence viral 337 

replication: for instance, a 24 h- or a short 2 h-pulse with TLR-2 ligand, prior to MDDC 338 

HIV infection, has been shown to decrease or enhance HIV replication, respectively [19, 43].  339 

In our study, we decided to focus on TLR-, NOD2 and DC-SIGN ligands because i) these 340 

PRRs are expressed by MDDCs and other cDCs; ii) primary HIV infection is often 341 

associated with co-infections; iii) TLR- ligands are already included in vaccine 342 
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formulations; iv) TLR- ligands are currently considered as potential adjuvants for 343 

therapeutic vaccination against HIV. With the exception of the work by Thibault et al. [19] 344 

who focused on TLR-2 and TLR-4, most authors studied the impact of PRR ligands on HIV 345 

replication using fully matured MDDCs (e.g. infecting 24h post PRR-treatment). In our 346 

work, MDDCs were treated with the agonists during HIV loading to mimic potential HIV 347 

co-infections and more importantly vaccine administration. We show that none of the PRR 348 

agonists significantly increased HIV-infection of MDDCs. In contrast, treatment with TLR-349 

3, TLR-4, NOD2 and DC-SIGN ligands reduced HIV replication in DCs. TLR-5, TLR-8 and 350 

TLR-9 agonists only slightly diminished MDDC infection. We observed an increase of 351 

transcripts encoding for A3G, A3A, A3F, ADAR-1 and Tetherin upon treatment with TLR-3, 352 

-4, NOD2, DC-SIGN but not TLR-6/2 ligands that does not influence replication, suggesting 353 

a potential link between the expression of these antiviral factors and the inhibition of HIV 354 

replication in MDDCs. PRR-triggering induces the secretion of various cytokines such as 355 

IFNs, IL-2, -7, -15 and -27 that might increase A3G/A3F expression [17]. In particular, 356 

TLR3- and TLR4-mediated increase of A3G expression relies on type-I IFNs [42]. However, 357 

the pathways influencing A3G/A3F expression probably rely on various transduction signals 358 

and/or cytokine environments depending on the PRR engaged. Indeed, in contrast to NOD2 359 

that also favors IFN production [4], DC-SIGN activation represses the expression of IFN-360 

related genes [6]; and TLR6/2 that mediates IFN secretions does not influence A3G/A3F 361 

expression in our experimental settings [4]. Note that other ISGs, such as TRIM5 or Mx2 362 

that influence HIV replication at different steps of the viral cycle might also account for the 363 

inhibition of HIV replication [29]. Although we did not investigate this point, PRR 364 

activation might influence replication at the level of entry by reducing CCR5 expression [19, 365 

43]. However, reduction of CRR5 expression does not necessary correlate with reduced viral 366 

replication e.g. TLR2-activation of MDDCs although reducing CCR5 expression, enhanced 367 

viral replication [19]. In DCs, to bypass the entry steps, Pion et al [16] used VSV-G 368 

pseudotyped HIV to highlight the role of A3G and A3F in viral restriction. 369 

PRR triggering also regulates antigen presentation by DCs [4]. TLR-signals redirect 370 

recycling MHC-I molecules to phagosomes allowing cross-presentation of antigens to CTLs 371 

[2] and upregulate the expression of rapidly degraded proteins, a major source of MHC-I 372 

restricted antigens [44]. TLR-activation increases the expression of factors involved in the 373 

MHC-I restricted processing pathways such as TAP, Tapasin, and favors a switch between 374 

standard to classical immunoproteasomes in DCs, potentially impacting the nature of 375 

peptide loaded on MHC-I molecules [2]. The cytokines secreted by activated MDDCs might 376 
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also influence CTL activation. We analyzed the capacity of PRR-activated DCs to present 377 

the cognate peptide, antigens derived from incoming viral particles or from productive viral 378 

infection, thus including newly-synthetized viral products. PRR-triggering did not influence 379 

the presentation of the control peptide nor of exogenous HIV antigens to HS-CTLs. 380 

Suggesting that the cytokines secreted by activated-MDDCs (Supporting Information Fig. 381 

1B) did not directly influence CTL stimulation. Other studies have shown that TLR-382 

triggering differentially impact cross-presentation of cellular antigens [2]. However, the 383 

kinetics of PRR activation might have different outcome depending on the routes of antigen 384 

entry, e.g. the presentation of MHC-I-restricted HIVGag-p24 antigens derived from viral 385 

particles relies on fusion of HIV and host membranes [28]. Although we used CTLs specific 386 

for different viral proteins (Gag-p17 and Gag-p24) and exhibiting various functional 387 

avidities, our work, with T cell clones, might also underestimate the impact of PRR-388 

triggering of CTL activation. 389 

Nonetheless, using HS-CTL clones, we demonstrate that TLR-3, -4, NOD2 and DC-390 

SIGN ligands enhanced the capacity of infected MDDCs to stimulate HS-CTLs. This was 391 

exemplified by the magnitude and the quality of HS-CTL activations. At first sight, our 392 

results reveal a potential paradox as triggering of these PRRs decreased viral replication, 393 

reducing the quantity of Gag-p24 antigens, but enhanced HS-CTL responses. However, the 394 

source of MHC-I-antigens is not limited to full length proteins as misfolded or truncated 395 

proteins provide peptides for the loading of MHC-I molecules [45]. In T cells, we have 396 

shown that A3G enhances the recognition of HIV-infected cells by HS-CTLs. This 397 

phenomenon requires the enzymatic activity of A3G that introduces hypermutations in HIV 398 

genome, leading to the expression of truncated viral peptides [17, 33]. In this study, we 399 

demonstrate that A3F also enhances the immunogenicity of infected T cells. In MDDCs, 400 

confirming previous findings [16, 19, 42, 43], we show that the expression of A3G and A3F 401 

is strongly induced upon TLR-3, -4, NOD2 activation. We observed that DC-SIGN 402 

signalling also increases their expression. In addition, we demonstrate that in MDDCs as in 403 

T cells, A3G and A3F when present in viral particles strongly favour CTL activation, thus 404 

providing a mechanism explaining PRR-mediated enhancement of CTL activation.  405 

We intended to extend our observations to primary blood derived DCs. We showed that 406 

under our experimental conditions, BDCA1
+
 DC had a remarkable ability to present 407 

antigens derived from incoming viral particles. However, this exogenous presentation 408 

impeded the detection and monitoring of endogenous HIV antigen presentation by 409 

productively infected BDCA1
+ 

DCs. We could not perform CTL activation experiments at 410 
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more distant time points from the infection since BDCA1
+ 

DC did not survive prolonged in 411 

vitro culture. Thereafter, although in vitro derived MDDCs share common features with 412 

inflammatory DCs, it will be important to extend our results on newly endogenous viral 413 

antigen presentation to primary blood derived or tissue resident DC subsets. Remarkably in 414 

the context of vaccinations, A3G expression in mucosal DCs and monocytes correlates with 415 

the activation of polyfunctional CTLs and upon challenge, to lower viral loads [46].  416 

Overall, we demonstrate that triggering of TLR-3, -4, NOD2 and DC-SIGN decreases 417 

HIV replication but in contrast enhances the quality of CTL activation mediated by HIV-418 

infected DCs (Fig. 7). In DCs, we highlight the role APOBEC family members in enhancing 419 

CTL activation. 420 

 421 
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 422 

MATERIALS AND METHODS 423 

Cells 424 

PBMCs from the blood of HIV-seronegative donors (Etablissement Français du Sang, Paris, 425 

France) were screened by FACS and/or using Luminex xMAP for the expression of HLA-426 

A*02- (BB7.2, Biolegends) or HLA-B27-positive donors. Monocytes were isolated with 427 

CD14
+
 magnetic beads (Miltenyi Biotec) and cultured with RPMI 1640 containing 10 % 428 

FBS, GM-CSF (20 ng/mL) and IL-4 (2 ng/mL, Miltenyi Biotec). On day 5, MDDCs were 429 

infected with HIV and simultaneously treated with PRR ligands (see Supporting Information 430 

Fig. 1A). The SL9c2 and0 CD8
+
 T cell clones, specific for HIV Gag-p17 (SLYNVATL, aa 431 

77–85, SL9 peptide KK1; restricted by HLA-A*0201) and for HIV Gag-p24 432 

(KRWIILGLNK, aa 263-272, KK10 peptide, restricted by HLA-B*2705) respectively, were 433 

restimulated and expanded, as previously described [28, 31]. CEM-HLA*02
+
 (CEM-A2

+
) 434 

cell were cultured in RPMI 10 % FBS. 435 

BDCA1
+
 DCs were isolated from the PBMCs of HLA-A*02-positive donors using a first 436 

step of enrichment (EasyStep Human pan-DC enrichment kit, Stemcell Technologies) and 437 

sorting by flow cytometry (FACS Aria flow cytometer, BD Biosciences) using CD1c, 438 

CD11c, CD45-, HLA-DR, CD14 and CD123 expressions. BDCA1
+
 DCs were maintained in 439 

culture in GM-CSF containing medium (3ng/ml). 440 

 441 

Antibodies 442 

On day 5, the purity of immature MDDCs was controlled by flow cytometry (FACScanto 443 

Flow Cytometer; BD Biosciences) using CD14-PE (M5E2; BD Pharmingen), and DC-444 

SIGN-APC antibodies (DCN46; BD Pharmingen). DC maturation was analyzed 24 h or 72 h 445 

post PRR-treatment using antibodies to HLA class I-FITC (W6/32; Sigma-Aldrich), HLA-446 

DR–PE (L243; BD Biosciences), CD86-FITC (2331; BD Pharmingen), CD83-PE (HB15e; 447 

BD Pharmingen), DC-SIGN-APC, and fluorochrome matched isotype controls. BDCA1
+
 448 

DCs were sorted using the following antibodies: CD1c-PE-Cy7 (Biolend), CD11c-PE-449 

CF594, CD45-APC-H7, HLA-DR-AF700, CD14-V450 (BD Pharmingen) and CD123-APC 450 

(Miltenyi Biotec). 451 

 452 

PRR ligands 453 

TLR-1 to -9 and NOD2 ligands (Invivogen) were used at the following concentrations:  454 

Pam3CSK4 (TLR-1/2; 0.2 µg/ml); HKLM (TLR-2; 0.2 10
8
 cells/ml); Poly(I:C) LMW 455 
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(TLR-3; 2 µg/ml); E. coli K12 LPS (TLR-4; 200 ng/ml); S. Typhimurium Flagellin (TLR-5; 456 

200 ng/ml); FSL1 (TLR-6/2; 200 ng/ml); Imiquimod (TLR-7; 0.2 µg/ml); ssRNA40 (TLR-457 

8; 0.2 µg/ml); ODN2006 (TLR-9; 1 µM) and Muramyl dipeptide (MDP) (NOD2; 20 µg/ml). 458 

DC-SIGN ligand (ManLam; 2 µg/ml) was a kind gift from O. Neyrolles (Toulouse, France).  459 

 460 

Virus and infection 461 

HIVYU2b or HIVSF2∆nef were produced as previously described [33]. For incorporation of 462 

A3G or A3F into viral particles, A3G and A3F encoding vectors were added to the 463 

transfection DNA mix, respectively [33]. The Gag-p24 content of all viral supernatants was 464 

measured using ELISA (PerkinElmer). MDDCs and BDCA1+ DCs were exposed to the 465 

indicated HIV strains at 200 ng/mL of p24 (4 h, 37 °C), washed, and cultured in medium 466 

with IL-4+GM-CSF or GM-CSF, respectively. In the HIV+ART conditions (24 h treatment 467 

of PRR-ligands), DCs were loaded as before with HIV but in the presence of 5 µM AZT and 468 

1.2 µM NVP. Three-day post-treatment, infection of MDDCs was analyzed by Gag-p24 ICS 469 

(KC57-RD1, Beckman Coulter).  470 

 471 

Cytokine/chemokine secretions 472 

Cytokine/chemokine release in the cell culture supernatants of MDDCs was quantified 473 

according the manufacturer’s instructions using the Luminex technology (Cytokine 25-Plex 474 

Human Panel, Biorad). 475 

 476 

T-cell activation assay  477 

For IFN-γ ELISpot, MDDCs (100,000 cells per well) were co-cultured (16 h) with HS-CTLs 478 

(ranging from 2,500 to 10,000 CD8
+
 T cells per well) and IFN-γ production measured as 479 

previously described [28]. As positive controls, MDDCs were loaded (1 h) with cognate 480 

peptides (1 µg/ml). For ICCS, MDDCs and T cells were co-cultured (6 h) at a (1:1) ratio. 481 

Brefeldin A (5 µg/mL) and Monensin (2.5 µg/mL, Sigma) were added after 1 h. CD8-A405 482 

(Invitrogen MHCD0826), CD4-APC-Cy7 (BD 7871), MIP1-β-FITC (RD system IC271F), 483 

TNFα -PECy7 (BD 557647), IL-2-APC (BD 341116), IFN-γ-A700 (BD 557995) and 484 

CD107a-PE-Cy5 (BD 555802) antibodies and Flow cytometry (BD Fortessa) were used. 485 

Data were analyzed with FlowJo software (Tree Star). Multifunctional data were analyzed 486 

with PESTLE v1.3.2 and SPICE v3.1 (Mario Roederer, VRC/NIAID/NIH). 487 

Polyfunctionality of HS-CTLs was evaluated by calculating a polyfunctional index (P_index, 488 

1) using FunkyCells ToolBox V.0.1.2 software (www.FunkyCells.com) [32]. Briefly,  489 
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Polyfunctionality index = ∑
=








⋅
n

i

q

i
n

i
F

0

 (1) 490 

where Fi is the frequency of cells performing i simultaneous functions. The 491 

polyfunctionality parameter q was set conservatively to 1. 492 

 493 

Real time RT-qPCR 494 

Four µg total RNA was reverse transcribed with oligo(dT)15 primers (Promega) using 495 

SuperScript III Reverse Transcriptase (Invitrogen). SYBR Green PCR was performed with 496 

50 ng of cDNA templates using commercial kit (Applied Biosystems) and GeneAmp 7300 497 

Sequence Detection System (Applied Biosystems). Each sample was analyzed in duplicates, 498 

and the amounts of templates normalized to internal controls (β-actin). Primer sequences are 499 

listed in Supplemental Table 1. PCR were confirmed on agarose gel (data not shown). 500 

 501 

Statistical analysis  502 

For statistical analyses of fold change variations, two-tailed paired t tests were used. Prism 503 

6.0 (GraphPad) was used to process all the statistical analyses. 504 
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FIGURE LEGENDS 643 

Figure 1. HIV infection does not interfere with PRR-induced maturation of MDDCs.  644 

MDDCs were infected with HIVYU2b and maturation at 24 h and 72 h p.i. was analyzed 645 

using antibodies to the indicated markers and flow cytometry. (A) Representative staining 646 

using MDDCs from one individual and using TLR-4 ligand (LPS). Values correspond to the 647 

fold changes to the untreated (untx) or uninfected (NI) conditions induced by HIV, LPS or 648 

HIV+LPS (f= fold change). (B) MDDCs from 8 healthy individuals were submitted to 649 

infection and the indicated PRR treatments (as in Supporting Information Fig. 1A) and the 650 

results for each maturation marker combined in a radar chart. For each marker, MFIs were 651 

normalized to untreated non-infected samples and the data expressed as fold increase. In red 652 

and green are depicted the results from HIV-loaded/infected (red) or uninfected (green) 653 

MDDCs, respectively. Standard deviations are not depicted for clarity. Raw data are 654 

presented in Supporting Information Fig. 2. 655 

 656 

Figure 2. Triggering of TLR-3, -4, NOD2 and DC-SIGN at the time of infection 657 

diminishes HIV replication in MDDCs. MDDCs were treated with PRR agonists and 658 

simultaneously infected with HIVYU2b. 72 h p.i., viral replication was analyzed by 659 

intracellular staining for Gag-p24. (A) Representative stainings using MDDCs from one 660 

individual. MDDCs were co-stained with anti-HLA-I Abs to allow a better discrimination of 661 

infected cells. PRR agonists are indicated on the top of each plot. MDDCs were gated on 662 

SSC and FSC (not shown). Values in each quadrant indicate the % of Gag-p24
+
 cells. This 663 

quadrant was set based on the staining of uninfected cells (not shown). (B) MDDCs from 8 664 

healthy individuals were submitted to infection and PRR-treatments (as in Supporting 665 

Information Fig. 1A) and the percentage of Gag-p24
+
 cells is shown. (C) For each donor, the 666 

infection rate was normalized to untreated infected samples and the data expressed as fold 667 

change. Data are expressed as mean ± SD of the 8 donors. two-tailed paired t tests, * p < 668 

0.05, ** p < 0.01, *** p < 0.001. 669 

 670 

Figure 3. Innate antiviral factors are upregulated upon PRR activation.  671 

Heat map of antiviral and innate factor mRNA expression. MDDCs were infected with 672 

HIVYU2b in the presence of the indicated PRR agonists. As a control, MDDCs were 673 

untreated (untx), uninfected (ni) or untreated and uninfected. The mRNA encoding for the 674 

indicated antiviral and innate factors were quantified by RT-qPCR and normalized to a 675 

Page 21 of 39

Wiley - VCH

European Journal of Immunology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 22 

house-keeping gene. The fold increase of each transcript is compared to untx ni sample.  676 

Data shown correspond to the mean fold increase of two independent experiments.  677 

 678 

 679 

Figure 4. Triggering of TLR-3, TLR-4, NOD2 and DC-SIGN at the time of infection 680 

enhances HIV Gag-p17 SL9-specific CTL activation by infected MDDCs. MDDCs from 681 

four HLA-A*02
+
 donors were loaded with HIVYU2b in the presence of AZT/NVP (ART, 24 682 

h) (A, right) or productively infected (72 h pi) (B, middle and right) in the presence of the 683 

indicated PRR-agonists and co-cultured with the HIV Gag-p17 SL9-specific CTL clone. (A 684 

and B, left) as a control, uninfected cells were treated with the PRR ligands and loaded with 685 

SL9 peptide. T-cell activation was monitored using IFN-γ ELISpot. For each donor and 686 

condition (infected or uninfected), activations were normalized to untreated (untx) samples 687 

and the data expressed as fold change. (B, right) Data expressed as a ratio of percent of 688 

activated cells to percent of infected Gag-p24
+
 cells (Fig. 2). The results from 4 independent 689 

experiments performed with cells from different donors are presented as mean ± SD.  690 

*p<0.05, ***p<0.001, two-tailed paired t tests. 691 

 692 

Figure 5. Triggering of TLR-3, TLR-4, NOD2 and DC-SIGN at the time of infection 693 

improves the quality of HIV Gag-p24 KK10-specific CTL activation by infected 694 

MDDCs. HLA-B*27
+
 MDDCs were infected with HIVYU2b in the presence of the indicated 695 

PRR-agonists (as in Supporting Information Fig. 1A) and co-cultured with the HIV Gag-p24 696 

KK10-specific CTL clones (DCs + HIV, 72 h, middle). As a control, uninfected cells were 697 

treated with the PRR ligands and loaded with KK10 peptide prior co-culture with the clone 698 

(DCs + KK10 peptide, left). T-cell activation was monitored by intracellular cytokine 699 

staining for IFN-γ, IFN-α, IL-2, TNF-α, MIP-1β and CD107a mobilization and flow 700 

cytometry. For each donor and conditions (infected or uninfected), activation levels were 701 

normalized to untreated (untx) samples and the data expressed as fold change. 702 

Polyfunctional activations were also analyzed and expressed as an index allowing a 703 

quantitative assessment of T-cell polyfunctionality (bottom panels). Data are expressed as a 704 

ratio of percent of activated cells or polyfunctional index to percent of infected Gag-p24
+
 705 

cells (right). Results shown as mean ± SD of data pooled from 3 independent experiments, 706 

performed with cells from two different donors.  *p<0.05, ***p<0.001, two-tailed paired t 707 

tests. 708 
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 709 

 710 

Figure 6. APOBEC-3G (A3G) and -3F (A3F) enhance HIV antigen presentation by 711 

MDDCs. (A) Representation of the experimental procedure. Viruses were produced upon 712 

cotransfection of 293T cells with HIV genome and plasmids encoding for A3G or A3F. 713 

CEM-A2
+
 cells or MDDCs were then infected. A Nef-deficient isolate was used since Nef 714 

interferes with HLA-A2 expression. CEM-A2
+
 cells do not express A3G, thus A3G and A3F 715 

exert their editing activity exclusively during the first cycle of replication. (B) CEM-A2
+
 716 

cells were incubated with HIVSF2∆nef, or HIVSF2∆nef + A3G or HIVSF2∆nef + A3F (5 to 20 717 

ng/mL of Gag-p24) and the kinetics of viral infection were analyzed by Gag-p24 FACS 718 

staining (topl). 24 h p.i., infected cells were collected and used to stimulate the SL9-specific 719 

CTL clone in an IFN-γ Elispot (1200 CTLs/well) (bottom). Background IFN-γ production 720 

induced by uninfected cells and CEM-A2
+
 cells alone were subtracted. Activation levels 721 

with SL9 peptide–loaded cells were around 500 IFN-γ
+
 spots/well (not depicted). The 722 

percentages of infected (top) and IFN-γ-producing (bottom) cells were normalized to CEM-723 

A2
+
 cells infected with WT HIV (middle). Data are presented as a ratio of IFN-γ

+
 spots to 724 

percentage infection (right). Each symbol represents an independent experiment. Data are 725 

shown as mean ±SD of 5 experiments. (C) As in (B) using HLA-A*02
+
 MDDCs as target 726 

cells. From 24 to 72 h p.i., infected DCs were collected, stained for Gag-p24
+
 cells (top) and 727 

used to stimulate HIV Gag-p17 SL9-specific CTL clone in ICCS (bottom). As a negative 728 

control DCs were also infected in the presence of ART (AZT/NVP) and co-cultured with the 729 

clones. Activation levels induced by SL9 peptide–loaded DCs were ranging from 25 to 60 % 730 

(not depicted). Data are normalized to the results using HIV-infected DCs (middle). Data are 731 

presented as a ratio of % activation to % infection. Each symbol represents an independent 732 

experiment using cells from different donors and data are shown as mean ±SD of 4 733 

experiments. ***p<0.001, **p < 0.01; *p < 0.05, two-tailed paired t tests. 734 

 735 

Figure 7.  Radar chart summarizing the differential impact of PRR triggering by its 736 

ligands on DC maturation, infection and HIV Ag-presentation. All calculated indices 737 

(maturation, infection, IFN-γ production in ELISpot and polyfunctional index (P-Index) 738 

were assembled for each PRR ligand.  739 

 740 

 741 

 742 
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Supporting Information Fig. 1:  

Experimental procedure and cytokine production by PRR-agonist treated MDDCs. (A) 

Schematic representation of the experimental procedure. MDDC were generated from CD14+ 

monocytes using IL4 and GM-CSF. MDDC were then loaded (AZT/NVP) or infected with 

HIVYu2b and simultaneously treated with PRR agonists. HIV-loaded (24h) or infected (72h) 

MDDC were analyzed using flow cytometry for the expression of DC-maturation markers and 

co-cultured with HS-CTL clones. CTL activation was monitored using IFN-γ ELISpot assay 

or ICCS. 72h p.i. replication was also analyzed using anti-Gag-p24 antibody or ELISA (not 

shown). (B) Cytokine/chemokine expressions by PRR-agonist treated MDDCs. 72h p.i. 

and/or treatment with the agonists, the release of cytokines/chemokines in the cell culture 

supernatants was evaluated using the luminex technology (25plex). The results from two 

independent experiments using MDDCs from two different donors (DC9645 and DC2107) 

are presented. The cytokines/chemokines that could be detected are showed. The numbers 

correspond to the concentrations in pg/ml. The red color code highlights higher expression 

levels compared to the untreated controls for each analyte and for donors (the darker the 

highest). Ni: not infected 

 

Supporting Information Fig. 2 (related to Fig. 1):  

Productive HIV infection enhances PRR-induced MDDC maturation. (A) Raw data from 

Fig. 1B presented as fold change of expression for each maturation markers for the 8 

independent experiments. Data were normalized to uninfected untreated MDDC. For each 

maturation marker, mean expression (±SD) of 8 independent experiments using 8 donors are 

indicated and statistical difference to the untx ni samples were determined as in Fig 1. (B) 

Increased expression of maturation markers on productively infected MDDC analyzed and 

presented as in Fig. 1. In bold and light red are depicted the results from productively infected 

(Gag p24+) and "by-standard" uninfected (Gag p24-) MDDC from the same co-cultures, 

respectively. Individual percentages of infection are presented in Fig 2B (ranging from 4.3 to 

24.7%).  For each PRR treatment, fold change of maturation marker were compared between 

the Gag-24- versus Gag-24+ cells using a two-way Holm-Sidak ANOVA multiple 

comparison test. Adjusted significant p values are presented (* p<0.05, ** p<0.01, *** 

p<0.001, *** p<0.0001). 
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Supporting Information Fig. 3 (related to Fig. 4): 

TLR-3, TLR-4, NOD2 and DC-SIGN agonists enhance HIV Gag-p17 SL9- specific CTL 

responses. Representative experiment using productively infected MDDC. MDDC from 

donor DC#2107 were productively infected in the presence of the indicated PRR-agonists (as 

in Fig. S1B). Three days p.i., viral replication was evaluated using HIV-Gag p24 intracellular 

staining (right panels) and cells co-cultured with an HIV Gag-p17 SL9-specific CTL clone 

(1000 CTL/well). T cell activation was then monitored using IFNγ-ELISpot (left panels). T 

cell activation and percentage infection were normalized to untreated (untx) samples and the 

data expressed as fold change (left and right middle panels, respectively). Relative to their 

capacity to reduce viral replication (bottom panel), TLR-3, TLR-4, NOD2 and DC-SIGN 

agonists enhanced (4 to 8 fold) the activation of the SL9-specific CTL clone. Background 

IFN-γ production induced by uninfected cells and treated MDDC alone were subtracted; both 

were at least 10 times lower than with SL9-specific CTL. Activation levels with SL9 peptide–

loaded cells were around 500 IFN-γ+ spots/well (not depicted). Data are the mean (±SD) of 

triplicates using cells from the DC#2107 donor. 

 

Supporting Information Fig. 4: 

HIV infection of primary BDCA1+ DC and activation of HIV Gag-p17 S9L-specific 

CTL clones. (A) Schematic representation of the experimental procedure. BDCA1
+
 DCs 

were FACS-sorted from PBMCs of HLA-A2+ donors based CD45, HLA-DR, CD14, CD123, 

CD11c and CD1c (BDCA1) expressions. Depending on the donors, we obtained 1.3 +/- 0.6 

million cells. 200,000 BDCA1
+
 DC were then loaded (AZT/NVP) or infected with HIVYu2b 

(200 ng/ml of p24 / million cells) and simultaneously treated with TLR-3 agonist. Two to five 

days p.i.,  the infection and maturation levels were assessed using intracellular Gagp24 or 

cell-surface CD86 stainings, respectively. BDCA1
+
 DCs were then co-cultured with SL9-

specific CTLs and T cell activation monitored using ICCS. (B) Results from of 1 out of 6 

independent experiments are presented. BDCA1+ DC infection and maturation was evaluated 

48h p.i.. (C) Infected or HIV loaded BDCA1+ DC were co-cultured with HIV-Gagp17 SL9-

specific CT clones and CTL activation monitored using ICCS.  

 

Supporting Information Fig. 5 (related to Fig. 5): 

TLR-3, TLR-4, NOD2 and DC-SIGN agonists improve the quality of HIV Gag-p24 

KK10- specific CTL responses. Representative experiment using productively infected 

MDDC from donor DC#2107. MDDC were productively infected in the presence of the 
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indicated PRR-agonists (as in Fig. S1B). Three days p.i., viral replication was evaluated using 

HIV Gag-p24 intracellular staining (not shown) and cells co-cultured with an HIV Gag-p24 

KK10-specific CTL. T cell activation was monitored by ICCS and flow cytometry using IFN-

γ, IL-2, TNF-α, MIP-1βand CD107a mobilization. (A) Representative ICCS experiment 

using TLR-4 agonist (LPS). The percentage of activated KK10 HS-CTL clones induced by 

KK10-peptide loaded or infected DC are indicated for non-treated cells (untx) and LPS-

treated cells. Background secretions induced by uninfected cells were close to zero (not 

shown). Marked boxes indicated whether the specific cytokines/chemokines or CD107a were 

positive for each condition. (B) The same data are also presented as pies showing the 

proportion of cells producing one or multiple cytokine/chemokine or marked for their 

cytolytic activity (CD107a mobilization). The total % of activated cells (mono or 

polyfunctional) and the polyfunctional indexes are also indicated for the 4 conditions tested. 

(C) Raw data from donor DC#2107 presented as percentage of responding KK10 HS-CTL 

clones and polyfunctional index (top panel) and as fold change to untreated cells (bottom left 

panel) for each PRR agonist. Taking into account to their capacity to reduce viral replication 

(bottom right panel), TLR-3, TLR-4, NOD2 and DC-SIGN agonists enhanced (3 to 17 fold) 

the activation of the KK10-specific CTL clone. The polyfunctional index follows the exact 

trend as the percentage of activation. 

 

 Supplementary Table 1 related to Fig. 3: Primers used for qRT-PCR 

 

Gene targeted Primer Gene targeted Primer

A3G Forward 5'- CCGAGGACCCGAAGGTTAC RIG-I Forward 5'- GACCCTCCCGGCACAGA

Reverse 5'- TCCAACAGTGCTGAAATTCG Reverse 5'- TCAGCAACTGAGGTGGCAATC

A3F Forward 5'- CCGTTTGGACGCAAAGAT A20 Forward 5'- TGCCCAGGAATGCTACAGAT

Reverse 5'- CCAGGTGATCTGGAAACACTT Reverse 5'- ACAAGTGGAACAGCTCGGATT

A3A Forward 5'- GAGAAGGGACAAGCACATGG ADAR-1 Forward 5'- CTTCCAGTGCGGAGTAGCG

Reverse 5'- TGGATCCATCAAGTGTCTGG Reverse 5'- ATTCATTGCGCCCGCGAG

SamHD1 Forward 5'- AAAACCAGGTTTCACAACTTCTGC CypA Forward 5'- GTCTCCTTTGAGCTGTTTGC 

Reverse 5'- TGCGGCATACAAACTCTTTCTGT Reverse 5'- CGTATGCTTTAGGATGAAGTTCTC 

Tetherin Forward 5'- AAGAAAGTGGAGGAGCTTGAGG TREX1 Forward 5'- GCATCTGTCAGTGGAGACCA

Reverse 5'- CCTGGTTTTCTCTTCTCAGTCG Reverse 5'- AGATCCTTGGTACCCCTGCT

MDA5 Forward 5'- GGTCTGGATATTAAAGAATGTAACATTGTTATC MxA Forward 5'- GCCGGCTGTGGATATGCTA

Reverse 5'- CCAGGACGTAGGTGCTCTCATC Reverse 5'- TTTATCGAAACATCTGTGAAAGCAA

Actin-B Forward 5'- TCCTTCCTGGGCATGGAGT

Reverse 5'- AGCACTGTGTTGGCGTACAG
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Supporting Information Fig. 3 
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A.  Experimental procedure  

B.  Evaluation of BDCA1+ DC infection and maturation 
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C.  Activation of HIV-Gagp17 SL9-specific CTL clones (ICCS) 
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Supporting Information Fig. 5 

C. 

Fold change to untreated sample 
% responding cells and Polyfunctional index  to % 
 of Gag p24+ cells  (ratio to untreated sample) 
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